
The quasiparticle lifetime at the mobility edge

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys.: Condens. Matter 3 4213

(http://iopscience.iop.org/0953-8984/3/23/010)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 11/05/2010 at 12:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/23
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phyri.: Condens. Matter 3 (1991) 421%%227. P k t e d  in the UK 

The quasiparticle lifetime at the mobility edge 

S C Y Siakt 
Deptartmnt of Physics, The UnivQsity, Highfield, Southampton SO9 SNH, UK 

Received 10 September 1990, in final form 28 March 1991 

Abstract. We calcuQte the temperature dependence of the inelastic scattering rate 
at the mobility edge in a disordered system in which diffusion is characterized by a 
wavevector and frequency dependence, and -pm it with that obtained when only 
conventional diffusion OCCUIS. We find that the inekatic scattering rate exhibits a 
hear  temperature dependence in both C L I S ~ .  We discuss this result in the context 
of bw-temperat- transport measurements in integral q d u m  Hall samples, aad 
point out certain theoretical incoasistencis which need to be resolved. 

1. Introduction 

The extended eigenstates of a disordered system are characterized by their ability to 
carry current [1,2], by which we mean that a wavepacket made up of such extended 
eigenstates, which is initially concentrated at some origin, will spread out and will 
diffuse away eventually because of impurity scattering [3]. Until recently [4], it was 
assumed that such diffusive motion is simple in the sense Chat a (diffusion) constant 
which is independent of wavevector and frequency appears in the diffusion equation. 

In this paper we discuss diffusion which is characterized not by a constant but by a 
diffusion coefficient which has the following dependence on wavevector and frequency: 

Diffusion characterized by the particular wavevector and frequency dependence above 
emerges as a general consequence of the scaling theory for localization [4], and has in 
fact been explicitly discussed for the integral quantum Hall effect 151. We will hence- 
forth refer to wavevector- and frequency-dependent diffusion as anomalovs diffusion to 
distinguish it from simple conventional diffusion which is governed by a constant. In 
(l.l), the exponent IJ, where I) > 0, controls the wavevector- and frequency-dependent 
component of diffusion [6]. We note that one regains simple diffusion if I) = 0 in (1.1). 
The quantity I,, which separates the two regimes of diffusive behaviour is found [5] to 
be proportional to the density of states at the Fermi energy p(E,) ,  with the constant 
of proportionality being of order unity. It is now understood [7] that one would expect 
anomalous diffusion to occur generally at the mobility edge in a disordered system. 

Our aim in this paper is to ask whether such wavevector.- and frequency-dependent 
diffusion could, through its consequences on the inelastic scattering rate, be detected 
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experimentally. It has been suggested [5] that a signature of anomalous diffusion, 
namely the non-zero parameter 7, should appear in the inelastic scattering rate and 
hence in low-temperature transport measurements, and our aim here is to examine that 
conjecture. In this paper, we examine a quantity which is essentially the reciprocal of 
the inelastic scattering rate, namely the inelastic scattering time ?.(E,T), defined as 
the mean time between inelastic collisions for a quasiparticle of energy E in a system 
at temperature T. More precisely, we calculate the temperature dependence of the 
inelastic scattering time for a quasiparticle at the mobility edge in a two-dimensional 
(zD) disordered system, in which diffusion is characterized by the wavevector and 
frequency dependence given in (1.1). 

From a theoretical viewpoint, we can motivate our work in the following way. Be- 
cause of its central role in characterizing the transport properties of physical systems, 
the quantity +in(EF,T), which may be taken to be the lifetime of a quasiparticle at 
the Fermi energy, has been calculated for a variety of Fermi systems. Perhaps the 
best known example is the case of electrons in pure metals, where phase space argu- 
ments [SI reveal that electron-electron scattering lead to a quasiparticle damping rate 
proportional to Ta. 

The qualitatively simple result above is modified when impurities are introduced 
into the electron gas, for the following reasons. One can regard the quasiparticle damp- 
ing rate as being essentially proportional to a matrix element for scattering between 
electron states at different energies. Such a matrix element should, in turn, depend on 
the strength of the scattering potential, in this case the dynamically screened Coulomb 
interaction, as well as on the probability densities of the corresponding electron states. 
When impurities are introduced into the electron gas, they cause electrons to scatter 
elastically, leading to  diffusion on length scales greater than the mean free path, which 
in the simplest case is controlled by a constant that does not depend on wavevector 
and frequency. Hence electronic mobility in disordered systems is limited by diffu- 
sion, and the electrons spend a longer time within an arbitrary region of space than 
do free planewave electrons in pure systems. Consequently, their probability densi- 
ties as well as their interactions are enhanced, thus increasing the amplitude of their 
matrix element for scattering. The resultant inelastic quasielectron scattering rate is 
then proportional to  T3I2 in an impure 3D metal [SI, and proportional to T in the 
corresponding 2D case [lo, 111. 

The simple diffusive dyuamics above can be described much more precisely: diffu- 
sion implies particular spatial correlations between electronic eigenstates that lie close 
together in energy. However, in the critical regime near the mobility edge, it is known 
that correlations between the eigenstates cannot be assumed to result from simple 
diffusion. Instead, it is widely believed that correlations in the critical regime obey a 
particular scaling behaviour predicted by Wegner [4]. There is a natural interpretation 
for these critical dynamics, namely to also associate them with a diffusion process, but 
with the diffusion now being wavevector- and frequency-dependent. It is interesting 
to ask how critical dynamics affect the quasiparticle lifetime at the mobility edge, and 
Belitz and Wysokinski [12] have examined this in a 30 system, where they find an 
inelastic scattering rate proportional to T. 

In this paper we discuss an example of critical diffusive electron dynamics a t  the 
mobility edge which also obey Wegner scaling, but in which the wavevector and fre- 
quency dependence is controlled by a new scaling parameter 7 [5,6]. From a theoretical 
viewpoint, we wish to compare the temperature dependence of the resultant inelastic 
electron-electron scattering rate in a 2D system with that derived from simple diffusive 
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dynamics, which the arguments of the previous paragraph suggest will he significantly 
altered. 

The rest of this paper is set out as follows. In section 2 we quantitatively introduce 
the wavevector- and frequency-dependent diffusion coefficient D(q ,w)  which forms 
the basis of our discussion. We then investigate the implications of such anomalous 
diffusion for the dynamically screened Coulomb interaction using a timedependent 
Lindhardt approach. We start with the exact eigenstates of the disordered system 
and ask what happens to these states when we turn on the dynamically screened 
Coulomb interaction adiabatically. We assume that we may treat this interaction to 
first order in perturbation theory. In this way we calculate the dynamically screened 
Coulomh interaction self-consistently. As anticipated, we find new dynamical screening 
behaviour in the presence of wavevector- and frequency-dependent diffusion. 

In section 3, we calculate the quasiparticle lifetime associated with anomalous dif- 
fusion. Our derivation of the expression for the inelastic lifetime, which follows an ap- 
proach due to Abrahams et a1 [lo], begins with the exact eigenstates of the disordered 
system. We add a particle to the mth state and ask about its time evolution when the 
dynamically screened interaction, calculated in section 2, is turned on. We describe 
the effects of the interaction via the self-energy of a single-particle Green function, 
which we evaluate using standard diagrammatic techniques. We find that the resul- 
tant inelastic scattering rate is proportional to T. Our result is valid for disordered ZD 
electron systems in general, provided the screening length in the system is sufficiently 
small. In the special case of simple diffusion (q  = 0), our result agrees with previous 
calculations. In addition, we find that the temperature dependence of the inelastic 
scattering rate is unchanged in the presence of wavevector- and frequency-dependent 
diffusion. This result can be understood qualitatively in terms of the matrix element 
for scattering discussed earlier. Wavevector- and frequency-dependent diffusion leads 
to changes in the probability densities of the electronic eigenstates, in other words 
to changes in the correlations between these eigenfunctionu. Such changes inevitably 
also affect the strength of the dynamically screened Coulonib interaction, but the two 
changes in the matrix element are such that they compensate each other, leaving the 
temperature dependence of the scattering rate essentially unaltered. 

An application of our result lies in the quantum Hall regime where the anomalous 
diffusion which we consider has been explicitly shown to occur. In the concluding 
section, we briefly consider our results in the context of experiments [13] performed 
on an integral quantum Hall sample, and point out some apparent contradictions 
which need to be resolved. 

2. The response of an interacting Fermi system 

Mathematically, wavevector- and frequency-dependent diffusion implies particular cor- 
relations between the eigenstates of the system. Our purpose in this section is twofold: 
first, to introduce these correlations, and second, to derive the dynamically screened 
Coulomb interaction associated with them. 

It is perhaps easiest to start by considering how a wavepacket made up of the 
singleparticle eigenstates of a disordered electronic system, spreads. For the sake of 
clarity as well as completeness, we repeat here arguments which have been used by 
other authors [3,5,14]. 
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Suppose we have a wavepacket made up of extended states, which at t = 0 is 
concentrated at the origin. Such a wavepacket has a probability amplitude at point r 
of 

(2.10) 

where u,(r) is the eigenstate which has eigenvalue E, associated with it. One finds 
from the requirements of completeness a corresponding coefficient given by 

c, = u,'(O) ( 2 . l b )  

Hence after time t has elapsed, the amplitude of the wavepacket may be written 

\IT(r,t) = CuL;(o)u,(r)e-iE*.' (2 .2a)  
01 

which results in a probability density of 

p ( r , t )  E I @(r,t) 1' = Cu;;(r)ub(0)u,(r)uP(O)ei(Ep-E")t (2%) 
0,P 

for the particular impurity configuration being considered. 

impurity configurations. We then obtain an averaged probability density of 
We take other realizationsof the disorder into account by averaging over all possible 

P(r,t) E (I q(r,t) 1') = dE dwS(r,E,w)eiW' ( 2 . 3 ~ )  J J  
in which ( ) denotes an impurity average, 

w = Ea - E, (2 .3b)  

and where we have identiiied the two-particle correlation function 

S(r,  E,w) = ( x 6 ( E  - E, - $w)6(E - Ea + fw)ui(r)ub(O)u,(r)u,(O)). ( 2 . 3 ~ )  

The function S ( r ,  E ,  w )  describes the spatial correlations between eigenstates which 
are separated in energy. Its Fourier transform is 

U,@ 

S(q, E , w )  = /dre"'S(r, E,w). (2.4) 

This correlation function S(q, E,w), or more precisely its wavevector- and frequency- 
dependent component S,(q,w), where [5] 

( 2 . 5 )  
f ( E )  s(qz E,w) = -So(qvw) 

T 

will he a central quantity in our work. 
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If the initial wavepacket consists of extended states, it is natural to assume that 
the wavepacket spreads diffusively. The impurity-averaged probability density P(r  , t) 
in (2.3a) them obeys the diffusion equation, and one may consequently show that the 
spectral function in (2.5) has the well-known form in zD [3,5,14] of 

where Do is the usual diffusion constant that is independent of wavevector and fre- 
quency. The divergence of SD(q, w)  in the limit w - 0,q -+ 0 is a signature of the 
large fluctuations in the local density of states which result from diffusion [14]. 

However, it now appears that correlations between the extended eigenstates of a 
disordered system are not as simple as one might expect from the above arguments. 
In fact, in an integral quantum Hall system [5], wavevector- and frequency-dependent 
correlations of the form 

for $ / w  < xo9 and 

(2.7a) 

(2.76) 

for qz/w z I,,, have been found, where zo = cp(EF), p(EF) being the density of states 
at the Fermi energy and c being a number of order unity. 

These correlations can be understood in the following way. For short wavevectors 
E-' < q c Lo-' where [ is the localization length and Lo = ( W Z ~ ) - ' / ~  is a critical 
length which depends on frequency, correlations between the states are characterized 
by a diffusion constant Do that is independent of wavevector and frequency. These are 
what we have called simple correlations. For longer wavevectors Lo-' < q < Ie,,,ic 
correlations are characterized not by a diffusion constant hut by the wavevector- and 
frequency-dependent diffusion coefficient of (1.lb).  This we have called anomalous 
diffusion. 

In real space, (2.7) imply that on long length scales Lo < I < 6 ,  the wavepacket 
diffuses in the conventional way, but its motion at intermediate length scales I,,,, < 
I < Lo appears to be controlled by a new parameter 1). In addition, the wavepacket is 
expected to move ballistically on short length scales I < Ielaatic. 

In the rest of this paper, we will work with dimensionless parameters wherever 
possible. The product Doze forms one dimensionless quantity whose value may be 
shown to be of order unity. We can set the value of Dozo equal to unity with no im- 
portant changes to the physics. This then allows us to characterize the two regimes of 
behaviour in (1.1) and (2.7) rather simply: a second dimensionless parameter, namely 
D0q2/w, drops out quite naturally, and simple diffusion is obtained for Doq2/w < 1, 
whilst wavevector- and frequency-dependent diffusion occurs for D,,q2/w > 1. 

In the rest of this section, we will examine the consequences of the anomalous 
correlations above on screening in the system. It is obvious from the way in which we 
have introduced the function So(q, w) that these correlations are directly connected to 
elastic relaxation processes in the disordered electronic system. We would therefore 

-1 
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qualitatively expect such correlations to be effective in determining the dynamical 
response of the system to an applied potential. A potential which enters quite naturally 
into the problem is that due to the Coulomb interaction between tbe electrons. The 
response of the system to this potential, in the form of the dynamically screened 
Coulomb interaction, should therefore be related to the correlations So(q, w). We now 
discuss that connection in detail, 

The relationship between the dynamically screened Coulomb interaction VJq, w) 
and the bare Coulomb potential Vb(q) is given by 1151 

where x(q,w) is the dynamical susceptibility. The dynamical susceptibility may be re- 
garded as the response of a system to an applied potential, on the microscopic level. In 
our case the dynamically screened Coulomb interaction provides an applied potential, 
and the electrons in the system respond by rearranging themselves, thereby providing 
an induced charge density p'. Hence we have as the definition of susceptibility 

We first calculate the susceptibility by assuming a dynamically screened interaction 
which is perturbatively weak. We then substitute our result for the susceptibility into 
(2.8) to determine the dynamically screened Coulomb interaction self-consistently. 

The problem of evaluating the dynamical susceptibility defined in (2.8) is essen- 
tially one of calculating the charge density induced by a time-dependent applied PO- 
tential. The following approach, based on time-dependent perturbation theory, is due 
to Lindhardt [16]. 

We again take as our starting point the set of single-electron disordered eigenstates 
U,,(.), which have corresponding energy levels E,. In a non-interacting system at 
T = 0 we imagine these levels to be filled in accordance with the Pauli principle, up 
to the Fermi energy EF. 

We then imagine turning on the dynamically screened Coulomb interaction K(r,t) 
adiabatically. We assume this interaction to be a first-order perturbation on the 
disordered eigenstates. The effect of the perturbation is to cause transitions between 
the single-electron eigenstates. Hence the solution of the full Hamiltonian can be 
written as a linear superposition 

(2.10) 

whose time-dependent coefficients c,(t) are given by perturbation theory. We cal- 
culate the charge density 1 +(r,t) induced by the dynamically screened Coulomb 
interaction, average this over all possible impurity configurations, and take the apprm 
priate Fourier transforms to obtain the dynamical susceptibility. This leads us to the 
following general expression for the dynamical response: 

-m 
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In (2.11), s is the spin degeneracy and p denotes the principal value of the integral. 
This equation tells us precisly how the dynamical response of a system is connected 
with the correlations between its single-particle eigenstates. Once these correlations 
are known, the imaginary part of the susceptibility follows through trivially, but its 
real component requires the evaluation of a frequency integral. 

Omitting details (see appendix l), we find that if diffusion in the system is simple, 
the dynamical susceptibility is given by 

(2.12) 

which agrees with a diagrammatic calculation [E, 171. 

consistently for these simple correlations is 
The resultant dynamically screened Coulomb interaction determined self- 

where 6 is the inverse screening length, equal to 4re2p(EF) .  
If the correlations are anomalous and q # 0, we find a susceptibility of 

(2.13) 

(2.14a) 

for I w I > Do$, and 

for I w I < D,qz, where g(q) is an undetermined function of q of O(r ) .  When q = 0, 
g ( q )  = 1. This response clearly suggests the presence of new dynamical screening 
behaviour (cf (2.12)). 

One could obviously write down a self-consistent expression for the dynamically 
screened Coulomb interaction by substituting (2.14) into (2.8), but the result is far 
too unwieldy to be useful. Instead, we analyse the resulting expression in different 
wavevector and frequency regimes and determine the approximate form of the dynam- 
ically screened Coulomb interaction in each region. 

When Doq2 < U ,  diffusion is simple, and we find a dynamically screened Coulomb 
interaction much the same as before: 

The above screened interaction is therefore approximately 

for q > I ( ,  and 

(2.15) 

(2.16~) 

(2.16b) 
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for < K .  

On the other hand, when Dag2 > w, we find the following approximate form for 
the dynamically screened Coulomb interaction: 

for q > IC, and for Q < K 

(2.1711) 

(2.176) 

where 

Our results therefore indicate that the anomalous diffusion which is characteristic at 
longer wavevectors does not in Fact lead to any important changes in the dynami- 
cally screened Coulomb interaction in the system, if one considers wavevectors much 
longer than the inverse screening length (cf (2.16~) and (2.17~)).  But at wavevectors 
much shorter than or of order of the inverse screening length, a novel form for the 
dynamically screened Coulomb interaction appears which is controlled by the non- 
zero parameter (cf (2.176)), and which reduces to give the more familiar screening 
behaviour associated with simple diffusion if q = 0. In the rest of this paper, we 
will explore one of the possible experimental consequences of these unusual screening 
dynamics. 

3. Calculation of the quasiparticle lifetime 

In this section we calculate the inelastic quasielectron scattering rate when anomalous 
diffusion is present in a system. For a quasielectron at the Fermi energy, the scattering 
rate should, after averaging over disorder, depend only on the temperature of the 
system. The simplest temperature dependence has the power-law form 

ri,(E,,q = (3.1) 

where U and p are numbers which depend on the symmetries in a system, its dimen- 
sionality, and on what scattering mechanisms are at work. In this section we consider 
a disordered two-dimensional system in which wavevector- and frequency-dependent 
diffusion is present, and determine the associated exponent p and constant of propor- 
tionality a. We wish in particular to compare our value of p with that derived for a 
similar system in which only simple diffusion is present [lo, 11,15,17]. 

Technically, the decay rate of a quasiparticle can be obtained by calculating its 
total self-energy shift and then taking the imaginary part [lo]. The self-energy of a 
quasielectron of energy E in a disordered system is 
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where C,(w, T )  is the self-energy shift of the electron in the mth disordered eigenstate 
U,(.). One can calculate this self-energy shift in the mth level by using standard 
techniques in many-body perturbation theory [IS]. 

In evaluating the averaged self-energy, we assume that we need only consider the 
first-order contribution to the self-energy C, (w ,T) .  This firsborder shift consists of 
Hartree-Fock corrections to the unperturbed level: there is a Hartree term which de- 
scribes the average interaction between the electron and the non-uniform background, 
and an exchange term from pairs of electrons with parallel spin which arises becaue of 
the Pauli exclusion principle. For a long-ranged interaction such as the dynamically 
screened Coulomb potential, the exchange interaction is much larger than the Hartree 
term [lo, 191. 

We therefore consider only the exchange term, whose diagrammatic representation 
consists of a Matsubara Green function and an interaction line [lo]. This diagram can 
be evaluated using the Feynman rules for a many-electron system at a finite temper- 
ature, but the usual recipes must be extended when dealing with a disordered system 
to include non-trivial correlations between the electronic eigenstates. Abrahams et al 
[lo] generalized the standard approach to cover all possible correlations. Using their 
method, we find (see appendix 2) that the temperature dependence of the inelastic 
scattering rate for a quasielectron at the Fermi energy E = EF = 0 is given by 

The double integral in (3.3) can only be calculated analytically if we make sensible ap- 
proximations for the integrand. Such simplification is necessary even in the relatively 
straightforward case of conventional diffusion. Using ideas outlined by Fukuyama and 
Abrahams [20], we can reduce the above integral (see appendix 2) in the wavevector 
and frequency range Doq2/w < 1, for which q = 0, to 

keT (wIDo) ’”  

J $ 0 (2.)2 (7) (Dotcq)2 + 4y2 (Doq2)2 + y2’  
009’ (3.45) dq2aq -4se’ DOWY - ‘3 3” “=a 

-keT 

The main contributions to the frequency integral in ( 3 . 4 ~ )  come from small frequencies 
which, however, lead to an infrared divergence. We cure this singularity by demanding 
that the calculation be self-consistent, so that frequencies with an amplitude below 
l/rin are assumed not to contribute to the determination of rin itself. In addition one 
can show that in the wavevector and frequency range considered, [l l ,  171 

DoKq > Y (3.4b) 

and this allows the integral in (3 .4~)  to be simplified further, to 

which gives a scattering rate of 
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A similar analysis for the r )  # 0 component (appendix 2) gives us an inelastic scattering 
rate of 

(3.6~) 

in a disordered system with anomalous diffusion, where 

(3.66) 

Equations (3.6) indicate that anomalous correlations produce an inelastic scattering 
rate which varies linearly with temperature, with the parameter r) appearing only in 
the constant of proportionality. This temperature dependence is the same as that 
due to purely conventional diffusion. We have therefore shown that, perhaps a little 
surprisingly, anomalous diffusion does not in fact change the inelastic scattering rate 
in the system. 

We can understand this result qualitatively by regarding the scattering rate as 
being essentially proportional to a matrix element for scattering between electron 
states at different energies. Such a matrix element in turn depends on the strength 
of the dynamically screened Coulomb interaction as well as on correlations between 
the electronic eigenfunctions. Changes in the eigenstate correlations also affect the 
strength of the dynamically screened interaction, and the two changes are such that 
they compensate one another, leaving the temperature dependence of the scattering 
rate essentially unchanged. 

4. A comparison between theory and experiment: some results on the 
integral quantum Hall effect 

A strong motivation for examining the anomalous diffusion discussed in this paper 
lies in the fact that such diffusive dynamics have been explicitly found in an integral 
quantum Hall system. In this section, we consider some low temperature transport 
measurements which Wei et a1 [13] have carried out on a semiconductor heterostruc- 
ture, and discuss our results in the context of these experiments. 

A dimensionless parameter which enters naturally into a discussion of low- 
temperature electronic transport properties is the ratio 0 = p/2u, where p is the 
inelastic scattering exponent already introduced, and U is the critical index which 
governs the divergence of the localization length. We will not enter into a discussion 
of the relationship between p and U here, but instead refer the reader to [XI. 

In an integral quantum Hall system, simple physical arguments indicate that both 
the maxima of the slopes of the Hall steps, as well as the reciprocals of the corre- 
sponding ranges of non-zero dissipative conductivity, should scale as a function of 
temperature with the ratio p. The low-temperature conductivity measurements per- 
formed by Wei et a2 [13] on a gallium arsenide sample confirm this scaling hypothesis, 
and provide an experimental value of 0.42 f 0.04 for the ratio p. Wei ef a1 interpret 
this result in the following way: they assume that p = 1 and conclude therefore that 
their measured value for 0 is consistent with a localisation exponent U N  1.2. 
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Unfortunately, the picture as we see it does not appear to be so clear-cut. We 
agree that current evidence suggests that U should have a value N 1 in a disordered 
system which does not have a magnetic field imposed on it, at least in 3D. However, 
there has been increasing evidence in recent years that in quantum Hall systems, 
and in other disordered systems without timereversal symmetry, the value of the 
localization exponent U is actually closer to 2. This empirical observation is based on 
the best available theoretical estimates for U in such systems, calculated using a variety 
of analytical as well as numerical techniques. The following values of U have been 
obtained theoretically: U = 1.9 f 0.2 (from an analytical perturbational calculation, 
(221); U N 2 (an estimate from numerical calculations in [23]); U = 2.5 f 0.5 (based on 
numerical results, [24]); U = 7/3 (from an analytical, semiclassical calculation in [25]); 
and U = 2.34 i 0.04 (from a numerical calculation, [26]). 

The above results appear consistent with the value of the localization exponent 
U being approximately 2 in disordered systems with broken timereversal symmetry. 
Taking U to be equal to 2, we find from the result of Wei el Q /  that for that p N 1.7. 
However, our calculation in this chapter indicates that p should be unity fwe assume 
electron-electron scattering to be the dominant inelastic scattering mechanism in the 
system. 

In order to reconcile these apparently inconsistent results, one is forced to one of 
two possible conclusions. The first possibility is that electrou-electron scattering is not 
the dominant inelastic scattering process, in which case p need not be unity, and the 
above results are consistent with one another. Alternatively, exactly the opposite could 
be true, namely that Coulomb interactions in quantum Wall and disordered systems 
generally are actually much stronger than has been allowed for, by which we mean 
that Coulomb effects should be taken into account even when determining properties 
associated with localization, for instance the value of the localization exponent U. 
This has not so far been done: localization has essentially been studied by treating 
Coulomb interactions as either weak or non-existent; in particular, the estimates of v 
quoted above derive from a non-interacting single-particle picture. 

The 
first implies that Coulomb interactions in quantum Hall systems are extremely well 
screened, in which case electron-electron scattering cannot be the dominant inelastic 
scattering process in these disordered systems, and one must consider an alternative 
scattering mechanism which dominates. The most obvious candidate is then electron- 
phonon scattering, and this conclusion Seems a little surprising since we are dealing 
with temperatures as low as 0.1 K. The second proposibion, if true, is equally sur- 
prising because it suggests that a proper understanding of localization must, even in 
principle, involve taking Coulomb interactions into account. This would imply that a 
radical examination of existing singleparticle theories would be necessary for future 
progress. Further work must he done before the issues raised above can he resolved. 

Both of the above propositions have interesting physical consequences. 

5. Summary 

In this paper we calculate the quasiparticle scattering rate in a disordered electron 
system in which the electronic dynamics are characterized by a diffusion coefficient that 
depends on wavevector and frequency. The appearance of wavevector- and frequency- 
dependent diffusion necessarily implies new dynamical screening in the system. We 
first calculate the dynamical susceptibility, and then use our result to determine the 



4224 S C Y Siak 

dynamically screened Coulomb interaction in the system self-consistently. We find 
that although the response of the electrons to an external perturbation is indeed rather 
different from what one would expect if they diffused conventionally, the temperature- 
dependence of the associated inelastic quasielectron scattering rate is unchanged in 
these circumstances, being proportional to temperature just as it is for a system in 
which only conventional diffusion is present. 

We can understand this result in simple terms. The inelastic scattering rate is 
essentially proportional to the amplitude of a matrix element for scattering between 
electron states at different energies. Such a matrix element depends in turn on the 
strength of the dynamically screened Coulomb interactions, as well as on correla- 
tions between the electron eigenstates. Changes in the eigenstate probability densities 
also affect the strength of the dynamically screened interaction, and the two changes 
compensate one another, leaving the temperature dependence of the scattering rate 
unchanged. 

On the other hand, one would expect from known theoretical and experimental 
results that the inelastic scattering rate in a disordered system such as the one we 
consider should increase approximately as a quadratic function of temperature. There 
are two possibilities which could explain these rather contradictory results: either 
electron-phonon scattering (and not Coulomb scattering) is the dominant inelastic 
scattering mechanism in these systems down to temperatures of - 0.1 K,  or Coulomb 
interactions in disordered systems are much stronger than has  hitherto been assumed. 

Append- 1. 

For anomalous correlations, the frequency integral in (2.11) becomes non-trivial. Let- 
ting D,qz = wo and setting the dimensionless quantity Doze to unity, we can rewrite 
the frequency integral in (2.11) as 

The dimensionless ratio wo/w which now appears quite naturally provides us with two 
obvious limits, namely wo/w < 1 and wo/w > 1, in which each integral in ( A l . l )  
simplifies and can be evaluated. We then estimate the real part of the dynamical 
susceptibility by interpolating between these limits. 

The detailed analysis is rather complicated. For example, let us consider the sum 
of the first two integrals in (Al.1).  In the limit w/wo < 1, all frequencies over which 
integration occurs are large compared with w .  Hence we can expand the first term in 
both integrands: 

1 1 
- U _  

w ' - w  - w' (1+2) 
Retaining only lowest-order terms, we obtain 
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Similarly, in the limit wo/w <s: 1, the sum of these integrals is ( r /2 ) (wO/w) ' ,  to leading 
order. A possible function which interpolates between these limits is 

a WO' 

2 w = + w ; '  
-- 

We therefore estimate a contribution to the dynamical susceptibility of 

from the simple part of the anomalous correlations, which not surprisingly is of the 
same form as (2.12). 

Using the same approach, we can estimate the contribution to the susceptibility 
from correlations that are characterized by q # 0, the final result being shown in (2.14). 

Appendix 2. 

Following Abraham et al we obtain an averaged self-energy which is directly related 
to the correlation function introduced in section 2: 

(A2.la) 

Here the terms w, = 2ankBT where n = 0 ,1 ,2 , .  . . are ,the Matsubara frequencies, 
and 

(A2.lb) 

is the dynamically screened propagator in 2 0  [15]. Performing the integral over U in 
(Zla), summing over Matsubara frequencies, and taking the imaginary part of the 
resultant self-energy, we obtain a quasielectron scattering rate of 

k ( E , T )  = ~ d y [ f ( y + E ) + n ( ~ ) l J ~ I m [ V . ( q , y ) l S ( q , ~ ) .  (A2.2a) 

For a quasielectron at the Fermi energy E = EF = 0, we must evaluate (cf (3.3)) 

-CO 

We now describe how we estimate the q = 0 contribution to the inelastic scattering 
rate. 

In this case we use (2.16) to approximate 

(A2.3) 
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for q < n and zero otherwise, i.e. for all q > n. 
It is also sensible to let 

(A2.4) 

because the contributions from large frequencies are small. We therefore obtain (cf 
(3.4)) 

and this eventually leads to the result of (3.5). The contribution from the q # 0 
component is not much more complicated. In this case, we let 

for q < n, and zero for q > n respectively. Although this appears a rather complicated 
function, its product with the correlations SA(q,w) is actually rather simple because 
factors in the numerator and denominator cancel out. Thus we obtain the scattering 
rate of (3.6). 
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